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1. Introduction 

Particle-based simulations at micrometer-length scales are required in order to 
study the effects of microstructural features that commonly exist in composite 
materials. These microstructural heterogeneities, such as voids, cracks, and grain 
boundaries, dictate the macroscopic material’s properties, as well as its response 
to the thermal and mechanical loading that occurs in most applications and 
technologies. Access to these length scales can be computationally taxing for 
fully atomistic simulations; thus, micro- and mesoscale methods involving 
coarse-graining are commonly employed to extend the spatial and temporal 
scales. While coarse-graining reduces the number of degrees-of-freedom in the 
system, there remains a “big data” challenge in efficiently processing extremely 
large data sets containing information for O(billions) of particles over the entire 
trajectory of a simulation. This work describes a suite of computational tools 
developed to both create coarse-grain composite model structures, and 
characterize their structure and material properties. These computational tools, 
hereafter referred to as the ARL Composite Model Builder and Analysis Toolkit 
(COMBAT), leverage the existing parallel communication framework within the 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)1 and/or 
the Python mpi4py2 library to efficiently process systems containing billions of 
particles, thus enabling the study of microstructural heterogeneity in composite 
materials. 

The technical report is organized as follows: an overview of the underlying 
software used in the ARL COMBAT suite is provided in Section 2, followed by 
a description of pre-processing tools in Section 3, post-processing tools in Section 
4, and example usage of the tool features in the Appendix. Most of the tools can 
be used independently, so readers that are interested in solely polymer building 
or void detection can seek out those subsections and the corresponding example 
code usage independently. 

2. Software 

The software tools described here leverage functionality present within the 
LAMMPS1 software package, or were developed independently in a Python 
module, combat, to analyze data sets produced by LAMMPS. The following 
sections present a brief overview of LAMMPS and the combat Python module, 
including dependencies and capabilities. Readers are directed to the LAMMPS 
website at http://lammps.sandia.gov for more thorough documentation on the 
LAMMPS framework and user commands. The combat Python module is 
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available at https://github.com/USArmyResearchLab under the Army Materials 
Modeling for Particle Models software suite (pending ARL Public Release 
approval). 

2.1 LAMMPS 

LAMMPS1 is a highly-scalable domain decomposition software developed by the 
Department of Energy at Sandia National Laboratories, and can be used to 
perform a variety of simulations from the atomistic scale to the continuum scale. 
LAMMPS efficiently scales in parallel, and is routinely used to perform  
particle-based simulations containing O(billions) of particles. Functionality is 
partitioned into separate add-on packages located in the LAMMPS source 
directory that can be optionally included when building/installing LAMMPS. The 
following add-on packages are integral to the software tools described hereafter, 
and must be installed in order to follow the examples provided in the Appendix: 

• MC: required for polymer bond creation 

• MISC: required for monomer insertion 

• MOLECULE: required for polymer growth 

• RIGID: required for rigid expansion of polycrystalline materials 

• VORONOI: required for void volume calculations in crystalline materials 

2.2 Combat Python Package 

A Python module, combat, was developed in order to efficiently post-process data 
sets produced by LAMMPS. The module contains code to perform domain 
decomposition, build neighbor lists, and compute locally weighted averages in 
parallel. The spatial domain decomposition process involves identifying both the 
particles located within the domain (hereafter referred to as “local particles”), and 
the particles that are not located within a domain, but are within the cutoff 
distance of any particle within the domain (hereafter referred to as “ghost 
particles”). Periodic boundary conditions in 3 dimensions are considered in this 
process. Once the system has been subdivided, each processor is assigned an 
individual subdomain, containing all the necessary information to perform 
calculations that rely on neighboring particles (e.g., Lucy weighted averages3), 
and can execute commands independently to dramatically reduce the time-to-
solution and improve parallel efficiency. Additionally, data is structured on each 
processor as a pandas4 DataFrame, allowing complex querying and efficient 
calculations on the tabulated data. Additional details on file input/output (I/O), 
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domain decomposition, and neighbor list construction are discussed in the 
following sections. 

2.2.1 Input/Output 

In the present implementation of combat, the reading and writing of data files is 
currently limited to LAMMPS data file and dump file formats, but can be readily 
extended to other file formats with appropriate modifications. The following code 
is used to read a dump file format in serial, and include a buffer region or “skin” 
of periodic neighboring particles within a 10 Å cutoff (required for accurate 
neighbor computations): 

s = combat.System.from_dump(filename, cutoff=10.0) 

The combat.System.from_dump class method returns an object with attribute 
particles that is a pandas DataFrame containing per-particle data. The I/O 
procedure changes slightly when performing analysis in parallel, where the 
following code is the parallel analog using mpi4py2: 

from mpi4py import MPI 
comm = MPI.COMM_WORLD 
s = combat.System.from_dump(filename, comm=comm, cutoff=10.0) 

At this point in the code execution, each processor can independently perform 
computations locally on their own DataFrame using s.particles. 

Note that when performing calculations within pandas, additional columns may 
be created within the DataFrame. By default, when attempting to use combat to 
write a new, modified output dump file, all columns that exist in the pandas 
DataFrame will be written to the output dump file. This may be undesirable or 
problematic in cases where large output dump files are produced. For instance, 
when a neighbor list has been created (discussed in Section 2.2.3), a new column 
is added to the pandas DataFrame containing the neighbors for each particle. 
Often, it may be unnecessary to print this information to the output dump file. In 
general, it is good practice to remove any undesirable data columns from the 
pandas DataFrame before writing to the output dump file. 

As an example, some computations within combat may build a neighbor list 
stored as a column named “neighbors”, while other computations may build a 
neighbor list stored as a column named “iloc_neighbors”. These data columns 
correspond to lists of index values and integer locations in the DataFrame, 
respectively, and are solely used for efficient execution within pandas, but these 
data columns are not needed in the output dump file. In this case, the following 
checks should be included to ensure that undesired information is not written to 
the dump file:  
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if 'neighbors' in s.particles: 
 del s.particles['neighbors'] 
if 'iloc_neighbors' in s.particles: 
 del s.particles['iloc_neighbors'] 

Similar commands can be used to remove any other undesirable data columns 
contained within the pandas DataFrame. 

The following code is used to write a dump file in serial: 

s.write_dump(filename, header=True, ghost=False) 

The header and ghost keyword arguments are optional. These keywords designate 
if the header information is included, and if particles identified as ghost particles 
are included in the dump file (ghost particles are further discussed in Section 
2.2.2). 

The following code can be used to write a dump file in parallel: 

from subprocess import Popen, PIPE 
import numpy as np 
 
if comm.rank==0: 

print('gathering global number of particles’) 
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]), 
root=0) 
if comm.rank == 0: 

s.global_particles = np.sum(nparticles) 
s.dump_header('dump.header') 

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False) 
comm.Barrier() 
if comm.rank == 0: 

print('concatenating') 
Popen('cat dump.header dump.*p > dump', shell=True).communicate() 
Popen('rm dump.header dump.*p', shell=True).communicate() 

2.2.2 Spatial Domain Decomposition 

Spatial domain decomposition partitions a 3-D space into smaller subdomains of 
equal volume, such that the assignment of n processors to n subdomains 
distributes computational cost across all processors. For a set of particles of 
uniform density in an orthorhombic simulation cell, this can be accomplished by 
creating a 3-D regular grid of processors that is superimposed onto the simulation 
cell. Each processor is responsible for the particles that reside in its subdomain 
(the local particles). In addition, each processor must include a buffer region or 
“skin” surrounding its subdomain, so as to include all neighboring particles 
within a cutoff distance (the ghost particles). A final level of complexity is added 
when considering periodic boundary conditions, which requires processors with 
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subdomains located at the global simulation cell boundary to track particles on 
the opposite end of the simulation cell. 

The current implementation of combat uses MPI enabled by the mpi4py Python 
package2. Each processor independently reads the entire data file containing 
particle coordinates, and performs the following operations: 

1) Define the subdomain boundaries in each dimension, and claim 
ownership of all particles that reside within the subdomain. 

2) Identify ghost particles from neighboring subdomains that reside within a 
specified cutoff distance. 

3) Recreate a skin of periodic images of particles for each dimension 
identified as periodic, and repeat the ghost particle identification in Step 
2. 

4) Delete all particles from memory that are not owned and are not ghost 
particles. 

At this point in the procedure, each processor has sufficient information to 
calculate local properties, and can proceed independently until further 
communication of global properties or the output of data to the memory is 
required. Ultimately, in order to write a new data file with newly computed per-
particle properties, each processor writes its own file containing data for the local 
particles it owns, and then the processor with rank 0 concatenates the files into 
one data file. 

Figure 1 (left) shows an example spatial-domain decomposition of a sample 
structure using 8 processors. Each colored region represents a different 
subdomain for which a different processor is responsible for the particles 
contained within the subdomain. Using a cross-sectional view, Fig. 1 (right) 
shows the particles that processor 0 is responsible for monitoring, where the local 
particles are colored blue and the ghost particles are colored white. The domain 
boundaries for processor 0 are shown as black lines. 

https://paperpile.com/c/KsHvzh/GTTx
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Fig. 1 (Left) An example domain decomposition with 8 processors. (Right) Cross-
sectional view of the particles tracked by processor 0. Blue local particles fall within the 
processor’s domain, while white ghost particles fall outside the domain. The processor must 
maintain the ghost particles because they fall within a cutoff distance from the edge of its 
domain. 

2.2.3 Building Neighbor Lists 

By minimizing the amount of data each processor contains, neighbor list 
construction and neighbor-dependent calculations can be performed more 
efficiently. Each processor uses a pandas DataFrame data structure to track its 
particles, and constructs neighbor lists using the SciPy5 KDTree data structure to 
efficiently identify nearest neighbors. By leveraging pandas, SciPy, and NumPy6, 
as well as the efficient vectorized operations contained within those Python 
packages, neighbor-dependent calculations can be computed orders of magnitude 
faster in wall-clock time as compared to pure “pythonic” algorithms. 

Neighbor lists that store the index values of neighbor particles as well as the 
integer location in the DataFrame can be constructed. These columns are stored 
in the DataFrame and labeled as “neighbors” or “iloc_neighbors” accordingly. 

Methods that require a neighbor list will determine if a neighbor list needs to be 
created/updated. Alternatively, the following can be used to manually build (or 
update) neighbor lists: 

s.neighbors_all(cutoff=10.0, remove_self=True) 
s.iloc_neighbors(cutoff=10.0, remove_self=True) 

The remove_self keyword argument is optional, and determines whether a 
particle will appear in its own neighbor list. This parameter allows for control 
where some calculations that require neighbor lists may include  
self-contributions, while others may not (e.g., a local density calculation). 
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3. Pre-Processing Tools 

3.1 Polycrystal Building 

The examples contained in this technical report use a Voronoi-based nanocrystal 
builder Python tool developed previously at ARL.7 The nanocrystal builder reads 
a LAMMPS dump file of a reference single crystal, and applies a Voronoi 
tessellation scheme to create a polycrystalline sample with a user-defined average 
grain size distribution (see Sections A.1 and A.2 of the Appendix for details of 
building the single crystal and polycrystalline samples, respectively). For 
application to the examples provided in the Appendix, it is required that each 
grain in the polycrystalline sample is identified using a different molecule ID 
within the LAMMPS data file format. Additionally, image flags must be accurate; 
this information is necessary for performing rigid-body dynamics. An example 
polycrystalline sample that was constructed using the Voronoi-based nanocrystal 
builder7 is shown in Fig. 2 (left), with grain boundary regions colored white. This 
sample structure was built by first creating a single crystal face-centered cubic 
(FCC) structure with a lattice spacing of 6.5 Å in a cubic simulation box with 
length 65.0 Å. 

3.2 Composite Polymer Growth 

For illustration of the methodology described in the next few sections, linear 
bead-spring polymer chains are inserted between crystal grains in a 
polycrystalline structure. The examples in Section A.3 of the Appendix use the 
polycrystalline sample described in the previous section, where 80 polymer 
chains are built with an average chain length of 50 monomer units. 

3.2.1 Rigid Crystal Grain Expansion 

A rigid affine expansion of crystal grains must first be performed to create 
unoccupied space for which polymer chains can be grown. Individual grains are 
given unique molecule IDs, and are treated as rigid bodies using the LAMMPS 
“fix rigid” command. Simulation box expansion is performed using the 
LAMMPS “fix deform” command, with particle positions remapped accordingly 
with changes in the box dimensions. The affinely expanded structure is shown in 
Fig. 2 (right). 

https://paperpile.com/c/KsHvzh/BO7v
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Fig. 2 (Left) Polycrystalline sample of FCC crystal grains output from a Voronoi-based 
crystal builder program.7 Boundaries between grains are colored white for visual clarity. 
(Right) Structure after rigid affine expansion to create space between grains. 

3.2.2 Polymer Growth Model 

In principle, any particle interaction model can be used during polymer growth. 
However, in practice the choice of the polymer–polymer interactions 
significantly influences the resulting polymer chain structure. In this example, 
polymer–polymer pairwise interactions were turned off during polymer growth 
or “polymerization” to bias the growth of chains towards elongated structures and 
minimize self-entanglement. Including a pairwise interaction enhanced chain 
agglomeration and resulted in aggregates of chains that inhibited crystal grains 
from approaching to a realistic distance during final compression of the 
composite. The inclusion of a crystal–polymer interaction is crucial to ensure that 
polymer particles do not penetrate crystal grains during the polymer growth 
process. For the example presented in this report, a soft repulsive potential using 
the LAMMPS “pair_style dpd” command is used for the crystal–polymer 
interaction, but in principle any interaction potential can be applied. During the 
polymerization stage, crystal particles are held in place by a harmonic spring 
force, tethering the particles to their initial position using the LAMMPS “fix 
spring/self” command. 

3.2.3 Monomer Insertion 

Following the rigid expansion of the crystal grains, the volume between these 
grains is filled with monomer particles using the LAMMPS “fix deposit” 
command, which inserts a particle into the simulation box only if the particle does 
not overlap (within a specified cutoff distance) any existing particle. In order to 
enforce chain linearity and eliminate the possibility of forming closed loops, 3 
different particle types are used. This methodology could be adapted to produce 
other chain geometries using additional particle types. All polymer particles 
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involved in 2 bonds ultimately end up as the first particle type (polymer type). 
The second type (active type) represents chain ends that can be involved in a 
maximum of one bond. The final particle type (potential type) represents lone 
monomer particles that have yet to be incorporated into a polymer chain, and thus 
are not involved in any bonds. 

The insertion of monomer particles is performed in 2 steps. First, active type 
monomer particles are randomly inserted into the volume between crystal grains. 
Inserting the active type particles first, which grow into polymer chains, ensures 
that these particles are homogeneously distributed throughout the unoccupied 
volume between grains. This step also provides more precise regulation of the 
number of chains that will be grown within the sample. Afterwards, potential type 
monomer particles are inserted. The total number of particles that should be 
inserted can be pre-determined based on the desired mass fraction of the polymer 
binder in the composite. The number of active type particles that are inserted is 
determined by the desired degree of polymerization. Each initial active type 
monomer grows to become one polymer chain, and therefore the number of active 
type particles should equal the total number of particles divided by the desired 
degree of polymerization. For example, if 4,000 polymer particles are necessary 
for a given mass fraction and the desired degree of polymerization is 50, then 80 
active type monomers and 3,920 potential type monomers should be inserted  
(80 = 4,000/50; 3,920 = 4,000 – 80). 

3.2.4 New Bond Creation 

Bond creation is implemented using the LAMMPS “fix bond/create” command, 
where complete details can be found in the LAMMPS documentation. In 
summary, after every n timesteps, bonds are created between particles of 
specified types if they satisfy a separation distance cutoff criteria. LAMMPS 
allows various bond topologies (angle, dihedral, improper) when creating new 
bonds, but is limited to allowing only one new bonding topology type (see 
LAMMPS documentation for more details). 

In the polymer growth algorithm presented here, bonds are only created between 
chain ends (active type) and lone monomers (potential type). When a new bond 
is formed, potential type particles become active type, and if the new bond was 
the second bond for the active type, the active type particle becomes a polymer 
type particle. At the end of the polymerization process, any remaining potential 
type particles are deleted. Remaining active type particles are chain end particles. 
These can either be converted to polymer type particles or left as a separate type 
for distinction later. A schematic representation of the polymerization algorithm 
is shown in Fig. 3. 
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Fig. 3 A schematic showing the polymer growth algorithm. Potential type particles are 
shown in white, active type particles are shown in green, and polymer type particles are shown 
in blue. Descriptions for this example: 1) initial system starts with 5 potential type particles 
and 1 active type particle; 2) a bond was created between a potential type particle and the 
active type particle; 3) another bond has been created, where the middle active type particle 
is converted to a polymer type particle; 4) a repeat of the process in Step 3. 

The polymerization process does not guarantee 100% complete polymerization, 
as it depends on the mobility of potential type particles and the accessibility of 
active type polymer chain ends. However, if the simulation is run for a sufficiently 
long time, polymerization can achieve 100% completion. The polymerization 
process at 0%, 50%, and 100% completion is shown in Fig. 4. 

 

Fig. 4 Polymerization at 0% (left), 50% (middle), and 100% (right) completion. Active 
type particles are colored green, potential type particles are colored white, and polymer type 
particles are colored blue. 

3.2.5 Compression 

Following the polymer growth process, the restraint fixing crystal particles to 
their positions is removed, polymer–polymer interactions are turned on, and a 
barostat is applied to control the external pressure on the system.  
Isothermal–isobaric dynamics are performed to compress the sample to the 
desired density. The value of the imposed pressure needed to achieve the desired 
density will be dependent on the specific sample, but convergence of this value 
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to achieve the desired density within satisfactory limits is expected to occur 
quickly. 

3.3 Updating Molecule IDs 

During bond creations using the “fix bond/create” command, LAMMPS does not 
update molecule IDs; however, this information can be recovered from the bond 
topology list using graph theory. Using the NetworkX Python package,8 a graph 
was built using the bonds listed in the output from LAMMPS. Subgraphs 
representing different polymer chains can then be extracted from this graph, and 
a list of nodes (i.e., particles) in each connected subgraph can be used to update 
the molecule IDs for each polymer chain. The number of nodes in each subgraph 
is related to the molecular weight of each polymer chain, which is used to define 
the molecular weight distribution. This algorithm based on graph theory is 
handled within the NetworkX Python package8. This feature was included in the 
combat module, and the following code can be used to generate appropriate 
molecule IDs: 

s = combat.System.from_data(filename, atom_style=’molecular’) 
s.molecules_from_bonds() 
s.write_data(new_filename, atom_style=’molecular’) 

The above code assumes that bonds are present in the LAMMPS data file. Figure 
5 (left) shows the average length of the polymer chains as a function of time 
during the polymerization. Figure 5 (right) shows the final distribution of polymer 
chain lengths. 

 

Fig. 5 (Left) Average chain length as a function of simulation time for an example 
polymerization with a target degree of polymerization of 50. (Right) Final distribution of 
the polymer chain lengths at the end of the polymerization. 

  

https://paperpile.com/c/KsHvzh/Ai1P
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4. Post-Processing Tools 

4.1 Void Detection 

Voids can form naturally in composite materials and are crucial components of 
the microstructure heterogeneity in these materials. These voids can have a 
variety of shapes and sizes, from near-spherical shapes to highly irregular 
cylindrical shapes, and far beyond. Voids can be introduced during the initial 
structure construction (intentionally or not), or may form dynamically upon a 
stimulus (i.e., shock). In either case, it is critical to have the ability to identify the 
presence and location of voids in such model systems. The algorithm used to 
probe the model composite structures for unoccupied space involved the 
construction of a lattice of dummy particles throughout the sample. For each 
lattice site, an overlap with existing particles (using a user-defined cutoff) results 
in the deletion of the dummy particle at that lattice site. Any dummy particles 
remaining after this process effectively fill the unoccupied space in the structure. 
The construction of the dummy particle lattice and the deletion of the particles 
overlapping with existing particles were performed using functionality already 
present in LAMMPS. Additionally within LAMMPS, clusters of dummy particles 
were identified to distinguish between multiple voids, and the volume of each 
cluster of dummy particles was calculated using the VORONOI package in 
LAMMPS, which uses the open-source voro++ package.9 Example LAMMPS 
input can be found in Section A.4 of the Appendix. Figure 6 shows the 3 steps 
during the void detection algorithm: (left) a crystal with a centered spherical void 
before dummy particle insertion, (middle) the crystal and dummy particles before 
deletion of overlapping dummy particles, and (right) resulting representation of 
the void volume within the spherical void. 

 

Fig. 6 (Left) A cross-sectional view of a sample structure with a centered spherical void. 
(Middle) Visualization of both the crystal and a lattice of dummy particles before deletion 
of overlapping dummy particles. Note that despite the illusion of a continuum-looking blue 
cube, the image consists of individual blue particles representing dummy particles on a 
lattice. (Right) Resulting representation of the spherical void following deletion of 
overlapping dummy particles. 

https://paperpile.com/c/KsHvzh/2ZGD
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An alternative method for calculating the void volume from the collection of 
dummy particles is to simply count the number of dummy particles and multiply 
by the volume per lattice site. This method provides a different physical 
representation of the void volume, as this is related to the accessible volume of a 
probe particle. Conversely, the volume resulting from the Voronoi tessellation is 
related to the void volume, or empty space not occupied by particles’ van der 
Waals spheres. The size of the probe and van der Waals spheres is determined by 
the cutoff distance used to identify overlaps between system particles and dummy 
particles. 

4.2 Grain Boundary ID 

One common defect in polycrystalline materials is the presence of boundaries 
between crystal grains. These grain boundaries play key roles in the 
microstructure properties and overall behavior of such materials. The location and 
identification of grain boundaries can provide a means of probing the specific 
behaviors associated with these grain boundaries. The algorithm presented here 
processes LAMMPS dump files under the combat Python module and is used to 
identify and label particles at the grain boundary interfaces and triple junctions. 
An example script to execute the combat Python module is provided in Section 
A.5 of the Appendix. Note that this algorithm assumes that as input, the 
LAMMPS dump file contains information that associates each particle with a 
grain ID (in this case, the molecule ID is used to represent the grain ID, although 
any column identifying the grain ID can be used generally). 

Upon execution of the combat module, the neighboring particles within a 
specified cutoff are identified, as discussed in Section 2.2.3. At this point, each 
particle is aware of the neighboring particles’ positions and grain IDs. For a given 
particle, the algorithm identifies the number of surrounding grains by searching 
through the neighbors, identifying the neighbor grain IDs, then counting the 
number of unique grain IDs, as depicted in Fig. 7. A numerical identifier 
describing the number of surrounding grains is then assigned to the set of data 
associated with the current particle. As illustrated in Fig. 8, grain boundary 
interfaces are formed at the interface between 2 grains (i.e., particles with 2 
surrounding grains), whereas triple junction lines are formed at the intersection 
of 3 crystal grains (i.e., particles with 3 surrounding grains). 



 

Approved for public release; distribution is unlimited.  
14 

 

Fig. 7 An illustration of the algorithm used to locate grain boundaries. The processor 
iterates through the particles, finds the nearest neighbors, and assigns a unique identifier 
defined by the number of surrounding grains and the type of grains. In this example, the 
highlighted particle in the center of each frame is located on the boundary between Grains 
1 and 2, and receives an identifier accordingly.  

 

 

Fig. 8 A 2500 × 300 × 300 nm3 (1.1-billion particle) polycrystalline sample with an 
average grain size distribution of 225 nm that has been processed with the combat Python 
module. Grain boundary interfaces (top) and triple junctions (bottom) are shown, where 
particles are colored by their grain ID. 

4.3 Weighted Local Averaging 

A per-particle instantaneous property, such as the temperature calculated from 
instantaneous velocities, can be statistically noisy compared to a global-average 
property. Therefore, it is of interest to calculate local-average properties for each 
particle, which includes information from neighboring particles within a cutoff 
distance. It is common practice to weight the contribution of neighboring particles 
due to their separation distance from the particle of interest. In general, a local 
average property (Ui) of particle i can be written as 
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 𝑈𝑈𝑖𝑖 =
∑ 𝑤𝑤(𝑟𝑟𝑖𝑖𝑖𝑖)𝑋𝑋𝑖𝑖𝑖𝑖

∑ 𝑤𝑤(𝑟𝑟𝑖𝑖𝑖𝑖)𝑖𝑖
 (1) 

where 𝑋𝑋𝑗𝑗 is a per-particle property of particle j, and 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) can be any arbitrary 
weighting function. A common weighting function is the Lucy function,3 which 
weights contributions of particles that are closer more than those that are farther 
away, and has the form 

 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = (1 + 3 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)(1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)3 (2) 

where 𝑅𝑅𝑐𝑐 is the cutoff distance. Figure 9 shows a schematic of the local 
environment around a particle indicating the contributions from particles within 
a cutoff distance. 

 

Fig. 9 Local environment around an example particle (red) within a cutoff distance 
represented by the dashed circle. The local average properties of particle 0 are a function of 
the properties of Particles 1–5 weighted by their separation distances r. Information from 
Particle 6 is not included, as it falls outside of the cutoff distance. 

Another commonly used weighting function is a quadratic function with the form 

 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = 𝐴𝐴(1 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑐𝑐

)2 (3) 

where A is an arbitrary pre-factor. Note that to calculate the mean without 
considering separation distances, set 𝑤𝑤(𝑟𝑟𝑖𝑖𝑗𝑗) = 1. 

The combat module has been generalized to use any weighting function, and can 
average any per-particle data present in the DataFrame. The Lucy-weighted local 
average (implemented by default) can be performed using the following code: 

s.weighted_avg(data, cutoff=10.0) 

https://paperpile.com/c/KsHvzh/Uuu6
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where data is the name of a column in the s.particles DataFrame. The following 
code can be used to implement a new weighting function (e.g., a quadratic 
function) without any modification to the combat module: 

import numpy as np 
def quad(dist): 
 ratio = dist/10 

return 15/2/np.pi*np.power(1-ratio, 2) 
s.weighted_avg(data, cutoff=10.0, weighting=quad) 

In this example, quad is a user-defined callable function that accepts an array of 
separation distances, and returns an array of the associated weighting values. The 
new column in the DataFrame will be assigned a name using the __name__ 
attribute of the callable function, for example “weighted_quad_temperature”, if a 
callable function quad was used and it averaged a column named “temperature”. 

A comparison of the instantaneous temperature (calculated from instantaneous 
velocities) (left), and a Lucy-weighted local average of the temperature (right) is 
shown in Fig. 10 (example provided in Section A.6 of the Appendix). It is 
apparent that the local averaging has smoothed out the property of interest, and 
the local features have become more distinct. 

 

Fig. 10 Comparison of instantaneous temperature (left) and a Lucy-weighted local 
average temperature (right) 

5. Conclusions 

The tools presented here enable the efficient construction and characterization of 
composite models for materials composed of microstructural heterogeneity using 
functionality present in the LAMMPS software package. Due to the  
micrometer-size scale of these features, large-scale simulations that generate 
extremely large data sets of particle properties are required. In order to efficiently 
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analyze the resulting data, a high-performance Python module was developed 
implementing MPI and performing efficient vector computation. Although the 
tools described in this report were originally developed to study composite 
energetic materials, the tools have been generalized and can be applied to other 
particle models at any length scale. Additionally, the tools were designed to be 
flexible to allow weighted local averaging on any per-particle quantity that may 
be output by LAMMPS, and to allow arbitrary user-defined weighting functions. 
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Appendix. Examples 
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The following examples are designed to be executed in their own directory. In some 
cases, the output produced from one example may be used as input in another 
example.   

A.1 Building a Single Crystal 

Table A-1 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) input 
for building a face-centered-cubic single crystal 

log             log.singlecrystal 
units           metal 
atom_style      atomic 
boundary        p p p 
lattice         fcc 6.5 
region          crystal_box block 0 10 0 10 0 10 units lattice 
create_box      1 crystal_box  
create_atoms    1 region crystal_box 
mass            * 100 
velocity        all create 300.0 12345 
write_dump      all custom dump.singlecrystal id type x y z vx vy vz 
quit 

A.2. Building a Polycrystalline Sample 

Table A-2 Input for nanocrystal_builder.py script 

single   
../singlecrystal/dump.singlecrystal   
50   
0, 100, 0, 100, 0, 100   
none   
polycrystal 

 

Table A-3 A Python script using the combat module to update molecule information 

import combat 
s = combat.System.from_data('data.polycrystal', atom_style='atomic') 
s.particles['mol'] = s.particles['type'] 
s.particles['type'] = 1 
s.write_dump('dump.polycrystal') 
s.write_data('data.polycrystal.molecules', atom_style='molecular') 
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A.3 Growing Polymer Chains 

Table A-4 LAMMPS input for composite polymer growth 

variable        nchains equal 80 
variable        total_particles equal 4000-${nchains} 
 
log             log.grow_polymer 
units           metal 
atom_style      molecular 
boundary        p p p 
comm_modify     vel yes 
 
region          box block 0 1 0 1 0 1 units box 
create_box      4 box bond/types 1 angle/types 1 & 
                extra/bond/per/atom 4 extra/angle/per/atom 9 & 
                extra/dihedral/per/atom 18 extra/special/per/atom 27 
read_data       ../polycrystal/data.polycrystal.molecules add merge 
nocoeff 
 
mass            1 200 
mass            2 28.0 
mass            3 28.0 
mass            4 28.0 
pair_style      dpd 1000 12.0 12345 
bond_style      harmonic 
angle_style     harmonic 
special_bonds   lj 0 1 1 
pair_coeff      1     1   0     0 
pair_coeff      2*4   2*4 0     0 
pair_coeff      1     2*4 0.1   1.0 
bond_coeff      1 5.0 2.5 
angle_coeff     1 4.5 140.00 
 
fix             rigid all rigid molecule torque * off off off & 
                force * off off off 
variable        expandx equal xhi*1.5 
variable        expandy equal yhi*1.5 
variable        expandz equal zhi*1.5 
fix             deform all deform 1 x final 0.0 ${expandx} & 
                y final 0.0 ${expandy} z final 0.0 ${expandz} remap x 
dump            particles_dump all custom 10 expansion.dump.* & 
                id type mol x y z 
run             100 
 
unfix           rigid 
unfix           deform 
undump          particles_dump 
 
group           xstal type 1 
fix             tether xstal spring/self 100.0 
region          polymer_growth block EDGE EDGE EDGE EDGE EDGE EDGE & 
                units box 
thermo          100 
thermo_style    custom step temp atoms bonds angles 
dump            d_deposit all custom 5000 dump.deposit id type x y z 
fix             active all deposit ${nchains} 3 1 40560 region & 
                polymer_growth near 6 attempt 1000 
 
unfix           active 
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Table A-4 LAMMPS input for composite polymer growth (continued) 

fix             potential all deposit ${total_particles} 4 1 27664 & 
                region polymer_growth near 6 attempt 1000 
run             ${total_particles} 
 
write_data      data.deposit 
 
unfix           potential 
undump          d_deposit 
group           polymer type 2 3 4 
velocity        polymer create 1000.0 82882 
timestep        0.005 
fix             random_walk all bond/create 1 4 3 5.0 1 atype 1 & 
                iparam 1 3 jparam 2 2 
fix             nve all nve/limit 0.1 
compute         nbonds all property/atom nbonds 
dump            particles_dump all custom 100 particles.dump.* & 
                id type c_nbonds x y z vx vy vz 
compute         bonds polymer property/local batom1 batom2 
dump            bonds_dump polymer local 1000 bonds.dump.* & 
                c_bonds[1] c_bonds[2] 
 
run             50000 
 
group           unreacted type 4 
delete_atoms    group unreacted 
group           active type 3 
set             group active type 2 
write_data      data.expanded_composite nocoeff 
quit 

 

Table A-5 A Python script using the combat module to update molecules from bond topology 

import combat 
s = combat.System.from_data('data.expanded_composite', \  
                            atom_style='molecular') 
s.molecules_from_bonds() 
s.write_data('data.expanded_composite.molecules', \  
             atom_style='molecular') 
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A.4. Void Detection 

Table A-6 LAMMPS input for void detection 

log             log.void_detection 
units           metal 
atom_style      atomic 
boundary        p p p 
lattice         fcc 6.5 
region          crystal_box block 0 15 0 15 0 15 units lattice 
create_box      2 crystal_box  
create_atoms    1 region crystal_box 
group           crystal type 1 
region          sph_void1 sphere 30 30 30 20 units box 
delete_atoms    region sph_void1 
region          sph_void2 sphere 70 70 70 20 units box 
delete_atoms    region sph_void2 
pair_style      zero 6.5  
mass            *         1 
pair_coeff      * * 
 
neighbor        0.0 bin 
 
lattice         sc 1 
create_atoms    2 box 
 
group           dummy type 2 
 
delete_atoms    overlap 6.5 dummy crystal 
 
compute         voronoi dummy voronoi/atom 
compute         voronoi_vol dummy reduce sum c_voronoi[1] 
 
variable        dummy_x atom x 
variable        dummy_y atom y 
variable        dummy_z atom z 
 
compute         void_cluster dummy cluster/atom 6.5 
compute         void_chunk dummy chunk/atom c_void_cluster compress yes 
fix             chunk_vol dummy ave/chunk 1 1 1 void_chunk & 
                v_dummy_x v_dummy_y v_dummy_z c_voronoi[1] & 
                file void.chunk.vol 
 
variable        voronoi_vol equal c_voronoi_vol 
 
dump            void_cluster dummy custom 1 dump.void.dummy & 
                id type x y z c_void_chunk c_voronoi[1] 
dump            crystal crystal custom 1 dump.void.crystal & 
                id type x y z 
fix             void_props all print 1 "$(v_voronoi_vol)" & 
                append dump.void.props 
 
run 1 
 
quit 
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A.5 Grain Boundary Identification 

Table A-7 A Python script using the combat module to identify grain boundary particles 

import combat 
 
# uncomment for parallel version 
# from mpi4py import MPI 
# comm = MPI.COMM_WORLD 
 
# uncomment for parallel version 
# s=combat.System.from_dump('dump.polycrystal',comm=comm, cutoff=10.0) 
s = combat.System.from_dump('dump.polycrystal', cutoff=10.0) 
s.num_grains = len(set(s.particles['mol'].values)) 
s.make_neigh_tree() 
s.define_grain_boundaries() 
s.shrink_boundary_identifiers() 
s.particles = s.particles[s.particles['num_grains'] > 1] 
del s.particles['neighbors'] 
# uncomment for parallel version 
'''if comm.rank==0: 

print('gathering global number of particles') 
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]), \  
                       root=0) 
if comm.rank == 0: 

s.global_particles = np.sum(nparticles) 
s.dump_header('dump.header') 

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False) 
comm.Barrier() 
if comm.rank == 0: 

print('concatenating') 
Popen('cat dump.header dump.*p > dump.boundaries, \  
      shell=True).communicate() 
Popen('rm dump.header dump.*p', shell=True).communicate()''' 

s.write_dump('dump.boundaries') 
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A.6 Weighted Local Averaging Temperature 

Table A-8 A Python script using the combat module to calculate weight-averaged local 
temperature 

import combat 
import numpy as np 
 
# uncomment for parallel version 
# from mpi4py import MPI 
# comm = MPI.COMM_WORLD 
 
# uncomment for parallel version 
# s = combat.System.from_dump('dump.singlecrystal', comm=comm, 
cutoff=12) 
s = combat.System.from_dump('dump.singlecrystal', cutoff=12) 
 
s.make_neigh_tree() 
 
s.temperature(mass=100) 
s.weighted_avg('temperature', 12) 
def quad(dist): 
    ratio = dist/12 
    return 15/2/np.pi*np.power(1-ratio, 2) 
s.weighted_avg('temperature', 12, weighting=quad) 
 
def avg(dist): 
    return [1 for _ in dist] 
 
s.weighted_avg('temperature', 12, weighting=avg) 
 
del s.particles['iloc_neighbors'] 
 
# uncomment for parallel version 
'''if comm.rank==0: 

print('gathering global number of particles') 
nparticles=comm.gather(len(s.particles[s.particles['ghost']==0]), \  
                       root=0) 
if comm.rank == 0: 

s.global_particles = np.sum(nparticles) 
s.dump_header('dump.header') 

s.write_dump('dump.{}p'.format(comm.rank), header=False, ghost=False) 
comm.Barrier() 
if comm.rank == 0: 

print('concatenating') 
Popen('cat dump.header dump.*p > dump.weighting', 

shell=True).communicate() 
Popen('rm dump.header dump.*p', shell=True).communicate()''' 

s.write_dump('dump.weighting') 
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List of Symbols, Abbreviations, and Acronyms 

3-D  3-dimensional 

ARL US Army Research Laboratory 

COMBAT Composite Model Builder and Analysis Toolkit 

FCC face-centered cubic 

I/O  input/output 

ID identification 

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 
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